A Model Qubit Using Optics and Microwaves with the NV-Center in Diamond

T.A. Kennedy

F.T. Charnock* †, J.S. Colton,* J.E. Butler,
(Naval Research Laboratory)
Robert Linares and P. Doering
(Apollo Diamond)

Acknowledge S. Rand (U. Michigan) and M.K. Bowman (EMSL)

Work supported by ONR

*NRL-NRC Post Doc

†Now at NIST Boulder

Outline

- Background
- The Qubit (NV Center)
- Gate Operations and Lifetimes
- Next Step: CNOT gate
- Summary

Background

- Previous work on NV
 - Optical and EPR (Davies and Hamer, Loubser and van Wyk)
 - Zero-field ODMR (van Oort and Glasbeek)
 - Level-crossing spectroscopy (Manson et al.)
 - Single-defect spectroscopy (Wrachtrup et al.)
- Other QI applications using NV
 - 13C nuclear spins as qubits/rf pulse gates
 - J. Wrachtrup et al., Optics and Spectroscopy 91, 429 (2001)
 - Cavity dark states
 - M.S. Shahriar et al., Opt. Commun. 195, 411 (2001)
 - NV as a single-photon source
 - C. Kurtsiefer et al., Phys. Rev. Lett. 85, 290 (2000)
 - A. Beveratos et al., Phys. Rev. A 64, 061802 (2001)

Criteria

Physical Implementation

- Well-Defined Hilbert Space
- Prepare in Ground State
- Low Decoherence Rate
- Available Gate Operations
- Single-Quantum Measurements

• Electron spin states

Polarize optically

 Operate with microwave pulses

Detect the result optically

DiVincenzo and Loss, Superlattices and Microstructures 23, 419 (1998)

The Optical Cycle Produces Spin polarization

- 532 nm cw excitation
- Cycle
 - Excitation
 - Radiationless decay
 - Radiative decay to ground state--100MHz
 - Intersystem Crossing--not spin conserving
 - 2 MHz out
 - Thermally activated back
- ~1 kHz rate

The NV Center Qubit--Optical Detection

- Optical Properties
 - Large absorption cross section
 - Short excited state lifetime
 - High quantum efficiency
 - Emission depends on spin state

The NV Center Qubit--Electronic Spin States Optically Detected Magnetic Resonance

Update

- Electron spin states √
- Polarize optically $\sqrt{}$
- Operate with microwave pulses
- Detect the result optically $\sqrt{}$

Microwave pulse operators

- Transient Nutation/Rabi flopping quantifies the operators
 - 110 mW Gunn Osc.
 - 10 W or 40 W TWTA
 - Microwave cavity with optical access
- 20 ns to 400 ns π -pulses

Microwave-Pulse Operation Optically Detected Electron Spin Echo

- Hahn echo with $\pi/2$ probe pulse for optical detection
- 32 µs phase-memory time
- Spin echo (Refocusing) is the basic quantum operation with EMpulses*

^{*}Gershenfeld and Chuang, Science 98

Long Lifetimes

Sample	Low-T T _M	[N-V]	[N]
Irradiated Sumitomo HTHP	3.6 µs	20 ppm (7E17cm ⁻³)	200 ppm
Apollo CVD	<u>></u> 32 μs	≤5 ppm	<2 ppm

- For T≤ 100 K, lifetime is limited by spin-spin interactions
- Best reported time is 41µs at 1.3 K (Van Oort et al., 1988)
- Much longer lifetimes (1 ms to 1 s) are expected for very dilute concentrations

Room Temperature

- Good optical and spin properties persist to room temperature
- $T_M \ge 9 \ \mu s$
- High-temperature lifetime may be limited by phononmodulation of the crystal field

The NV Center Qubit--Nuclear Spin States

- ¹⁴N is 99.6% I = 1
- ODMR component linewidth is about 0.08 mT (2.2 MHz)
- Partial nuclear polarization occurs at low temperatures

Entanglement and the CNOT gate

- Electronic spin and ¹⁴N nuclear spin as the A and B bits
- Microwave and radio-frequency pulse operators
- Gershenfeld and Chuang prototype for the CNOT gate

Summary

- Demonstration
 - Spin of the NV-center as qubit
 - Optical polarization and detection
 - Microwave pulse operators
- Long phase-memory times
 - $\ge 32 \,\mu s$ for T $\le 100 \,K$
 - $\ge 9 \mu s$ for room temperature
 - Not optimized--longer times expected
- Next step: CNOT gate

NRL Electronics January 2002